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If you had to be a pig, would you rather be a strong pig or a weak pig? Sometimes 

it pays to be weak.

The biologist John Maynard Smith reports an experiment where two pigs are 

kept in a box with a lever at one end and a food dispenser at the other.1 When the 

lever is pushed, food appears at the dispenser.

If the weak pig pushes the lever, the strong pig waits by the dispenser and 

eats all the food. Even if the weak pig races to the dispenser and arrives before 

the food is gone, the strong pig pushes the weak pig away. The weak pig is smart 

enough to figure this out, so it never bothers pressing the lever in the first place.

On the other hand, if the strong pig pushes the lever, the weak pig waits by the 

dispenser and gets most of the food. But the strong pig can race to the dispenser 

and shove the weak pig aside before it has entirely finished eating and then help 

itself to the leftovers. This makes it worthwhile for the strong pig to push the lever.

The outcome is that the strong pig does all of the work, and the weak pig does 

most of the eating.

Strategic situations can yield surprising outcomes. The Prisoner’s Dilemma of 

Chapter 11 provides one example; the pigs in a box provide another. In this 

 chapter, we will study the theory of games (or game theory for short), which 

allows us to catalog many of those outcomes and to discuss both their positive 

and their normative aspects.

12.1 Game Matrices

In this section, we will introduce game matrices and show how they can be used to 
systematically analyze strategic situations.

Pigs in a Box

Consider the pigs from the introduction to this chapter. We represent the pigs’ dilemma 
by a game matrix as in Exhibit 12.1. Across the top we list the possible strategies of the 

Theory of games 
or game theory

A system for studying 

strategic behavior.

Game matrix

A diagram showing 

one player’s strategy 

choices across the 

top, the other player’s 

along the left side, 

and the corresponding 

outcomes in the 

appropriate boxes.
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1 John Maynard Smith, Evolution and the Theory of Games (Cambridge, MA: Cambridge University Press, 1982).
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strong pig, who can either push the lever or wait by the food dispenser. Along the left 
side we list the possible strategies of the weak pig, who has the same options.

In each of the four boxes of the matrix we show the consequences of the pigs’ 
behavior. We assume that the food dispenser yields 100 calories worth of food and that 
pushing the lever burns 10 calories. We assume also that pigs care only about calories 
(which is presumably why they are called pigs).

If both pigs decide to push the lever, then they both run to the dispenser, where the 
strong pig shoves the weak pig aside and eats all of the food. The net gain is 90  calories 
for the strong pig (100 calories worth of food minus 10 calories burned pushing 
the lever) and minus 10 calories for the weak pig, who pushes the lever and runs but 
gets no food. The upper left-hand box in the exhibit shows this outcome.

If the strong pig waits by the dispenser while the weak pig pushes the lever, the 
strong pig gets all 100 calories worth of food and the weak pig loses 10 calories, as 
shown in the upper right-hand box.

If the strong pig pushes the lever while the weak pig waits by the dispenser, the weak 
pig is able to consume 75 calories before the strong pig arrives and takes the remaining 
25, leaving him with a net gain of 15 after subtracting the 10 that he burns by pushing 
the lever. This is the outcome in the lower left-hand box.

And finally, if both pigs wait by the dispenser, then nobody gets to eat anything at 
all, as indicated in the lower right-hand box.

Choosing Strategies

In the introduction to this chapter, we argued that the pigs will end up in the lower left-
hand box, which is to say that the strong pig will push the lever while the weak pig waits 
by the dispenser and gets most of the food. Let us see how we can use the game matrix 
to reach this conclusion systematically.

When the strong pig selects a strategy, he decides which column of the matrix both 
pigs will occupy. When the weak pig selects a strategy, he decides on a row. There are 

Pigs in a Box
EXHIBIT 12.1

The dispenser gives 100 calories worth of food, and it requires 10 calories to push the lever. If both pigs arrive 
at the dispenser simultaneously, only the strong pig eats. But if the weak pig waits at the dispenser while the 
strong pig pushes the lever, he can eat ¾ of the food before the strong pig arrives. The game matrix shows 
the pigs’ rewards for each combination of strategies.

The lower left-hand box is the only Nash equilibrium. Starting from any other box, at least one of the pigs 
would want to change his strategy.

Strong Pig’s Strategy

Weak Pig’s Strategy

Push lever

Wait by dispenser

Push lever Wait by dispenser

Strong pig gets 90 calories

Weak pig gets –10 calories

Strong pig gets 100 calories

Weak pig gets –10 calories

Strong pig gets 15 calories

Weak pig gets 75 calories

Strong pig gets 0 calories

Weak pig gets 0 calories
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four possible outcomes, represented by the four boxes of the game matrix. For each 
outcome, we can ask this question: If this were the outcome, would either pig want to 
change his mind? If one or both pigs would want to change their minds, then we can 
rule out that outcome as a possibility.

For example, suppose for the moment that we are in the upper left-hand box, where 
both pigs push the lever. If the strong pig changes his mind and waits by the dispenser, 
we move to the upper right-hand box, while if the weak pig changes his mind we move 
to the lower left-hand box. Would the strong pig want to change his mind? The answer 
is yes: By moving from the upper left to the upper right he gains 10 calories. This is 
already enough to rule out the upper left-hand box.

Would the weak pig want to change his mind? The answer is yes again: By moving 
from the upper left to the lower left he gains 10 calories (or more precisely, he avoids 
losing 10 calories). This by itself would also be enough to rule out the upper left. So the 
upper left is ruled out for each of two separate reasons: If that were the outcome, the 
strong pig would change his mind and the weak pig would change his mind.

Next suppose that we are in the upper right-hand box. Would the strong pig want 
to change his mind and move to the upper left? No; he prefers the upper right, gaining 
100 calories instead of 90. Would the weak pig want to change his mind and move to 
the lower right? Yes; he can then avoid losing 10 calories. So we rule out the upper right 
on the grounds that the weak pig would change his mind.

What about the lower right? The weak pig would not want to change rows, but the 
strong pig would want to change columns. Because the strong pig wants to change his 
mind, this outcome can also be ruled out.

Exercise 12.1 In the lower-right corner, how much would the weak pig lose by 

changing rows? How much would the strong pig gain by changing columns?

Finally, consider the lower left. Starting from here, the weak pig has the option to 
move up a box, reducing his calorie intake from 75 to −10; this option is not attractive. 
The strong pig has the option to move to the right, reducing his net calorie intake from 
15 to 0; this is not attractive either. Neither pig changes his mind, and the pigs remain 
in the lower left-hand box.

Any outcome that survives this process of elimination is called a Nash equilibrium 
outcome. An outcome is a Nash equilibrium if neither player would want to deviate 
from it, taking his opponent’s behavior as given. The phrase taking his opponent’s 
behavior as given is an important one here. Starting in the lower left, the strong pig 
would want to deviate provided he thought that for some crazy reason the weak pig was 
going to deviate too and he could end up in the upper right. But as long as the strong 
pig assumes that the weak pig is going to stick to his strategy of waiting by the food 
dispenser, he has no desire to change his own strategy.

The Prisoner’s Dilemma Revisited

The Prisoner’s Dilemma of Chapter 11 is already represented by a game matrix, which 
we reproduce in Exhibit 12.2. We argued in Chapter 11 that the prisoners land in the 
upper left-hand box. Let us confirm this conclusion using the techniques we’ve just 
developed.

Suppose the prisoners were in the upper right-hand box, with B confessing and 
A not confessing. If B switches strategies, we move down a row, increasing B’s prison 

Nash equilibrium

An outcome from which 

neither player would 

want to deviate, taking 

the other player’s 

behavior as given.
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The Prisoner’s Dilemma
EXHIBIT 12.2

The prisoners face the same dilemma as in Chapter 11. The only Nash equilibrium is in the upper left-hand 
corner; this is also the only square that is not Pareto-optimal.

Prisoner A’s Strategy

Prisoner B’s Strategy

Confess

Not confess

Confess Not confess

A gets 5 years

B gets 5 years

A gets 1 year

B gets 10 years

A gets 10 years

B gets 1 year

A gets 2 years

B gets 2 years

term; therefore B does not want to switch. But if A switches strategies, then we move a 
column to the left, where A’s prison term falls from 10 years to 5; therefore A does want 
to switch. Because at least one of the prisoners wants to switch, the upper right-hand 
box is not a Nash equilibrium.

It’s worth noting that the pigs in a box were out to maximize their calorie intake, while 
the prisoners are out to minimize their jail sentences. In all of the other examples of this 
chapter, the goal will be to maximize outcomes (as the pigs do) rather than to minimize 
them (as the prisoners do).

Exercise 12.2 Explain why the lower left-hand box and the lower right-hand box 

are not Nash equilibria. In each case, which prisoner wants to switch?

Dominant Strategies

In Chapter 11, we pointed out that Prisoner A would want to confess regardless of his 
beliefs about Prisoner B’s behavior. If Prisoner B is known to be confessing (placing us 
in the top row), then Prisoner A has a choice between getting a sentence of 5 years by 
confessing or getting a sentence of 10 years by not confessing. If Prisoner B is known to 
be not confessing (placing us in the bottom row), then Prisoner A has a choice between 
getting a sentence of 1 year by confessing or getting a sentence of 2 years by not confess-
ing. Either way, Prisoner A prefers to confess.

Confessing in the Prisoner’s Dilemma is called a dominant strategy for Prisoner A, 
because he would want to follow that strategy regardless of what Prisoner B was up to. 
Confessing is also a dominant strategy for Prisoner B. When both prisoners follow 
their dominant strategies, we reach the Nash equilibrium outcome where both  confess.

Pigs in a Box Revisited

Sometimes a player has no dominant strategy. Let us return to the pigs of Exhibit 12.1. 
Should the strong pig push the lever or wait by the dispenser?

Dangerous

Curve

Dominant strategy

A strategy that a player 

would want to follow 

regardless of the other 

player’s behavior.
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It depends on what he thinks the weak pig is doing. If the weak pig can be counted 
on to push the lever, then the strong pig should wait by the dispenser; but if the weak 
pig waits by the dispenser, then the strong pig should push the lever.

We can see this in the game matrix. If the weak pig pushes the lever we are in the 
first row. The strong pig can push (for a gain of 90) or wait (for a gain of 100); it is 
better to wait (that is, to choose the second column). But if the weak pig waits by the 
dispenser, we are in the second row. The strong pig can push (for a gain of 15) or wait 
(for a gain of 0); it is better to push (that is, to choose the first column).

Before the strong pig can choose his strategy, he’d like to know what the weak pig 
is going to do. This means that the strong pig has no dominant strategy. If he had a 
dominant strategy, he would not need to inquire about the weak pig’s behavior before 
deciding on his own.

The weak pig, by contrast, does have a dominant strategy: He should wait by the dis-
penser regardless of how the strong pig behaves. If the strong pig pushes (choosing the 
first column), then the weak pig can push (for a gain of −10) or wait (for a gain of 75); 
it is better to wait (that is, to choose the second row). If the strong pig waits (choosing 
the second column), then the weak pig can push (for a gain of −10) or wait (for a gain 
of 0); it is still better to wait (that is, to choose the second row).

Dominant Strategies versus Nash Equilibria

When both players have dominant strategies, as in the Prisoner’s Dilemma, there is 
one and only one Nash equilibrium. In the Nash equilibrium, both players play their 
dominant strategies.

But Nash equilibria can exist even when one or both players have no dominant 
strategy. In the “pigs in a box” example of Exhibit 12.1, the strong pig has no dominant 
strategy, but the lower-left corner is still a Nash equilibrium.

To keep track of the differences in these concepts, continue to focus on the pigs. 
We know that it is a dominant strategy for the weak pig to wait by the dispenser; 
in terms of the game matrix this means that the weak pig will always choose the 
second row.

Now suppose that we are in the lower-left box (where the strong pig is pushing the 
lever) and consider the following two questions:

1. Would the strong pig want to change strategies, given that he knows the weak 

pig will choose the second row?

2. Might the strong pig want to change strategies if he wasn’t sure what the weak 

pig will do?

The answer to question 1 is no. Once the second row is chosen, the strong pig cer-
tainly prefers the first column to the second. Neither the strong pig nor the weak pig 
wants to change, so the lower left is a Nash equilibrium.

The answer to question 2 is yes. If the strong pig thought that the weak pig had 
(foolishly) chosen the first row, then he would want to switch to the second column. 
His choice of columns depends on what he thinks the weak pig is doing, so he has no 
dominant strategy.

The Battle of the Sexes

Exhibit 12.3 shows a game that is usually called the Battle of the Sexes.
Fred prefers to go to boxing matches and Ethel prefers to go to the opera, but they 

both like doing things together. If they go their separate ways, both are miserable. The 
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game matrix puts numerical values on Fred and Ethel’s happiness (which economists 
sometimes call utility). If Fred goes to the opera while Ethel goes to the boxing match, 
they each earn zero units of utility; if Fred goes to the boxing match while Ethel goes to 
the opera, they each earn 1 unit.

But if Fred and Ethel attend the boxing match together, then Fred earns 5 units of 
utility while Ethel earns 3 just by being with Fred; if they attend the opera together, then 
Ethel earns 5 units of utility and Fred earns 3 just by being with Ethel.

Does Fred have a dominant strategy in this game? If he thinks that Ethel is going to 
the boxing match, he prefers to be at the boxing match, while if he thinks that Ethel is 
going to the opera, he prefers to be at the opera. This means that he has no dominant 
strategy. Neither does Ethel.

What about Nash equilibria? Suppose that Fred and Ethel both go to the boxing 
match (the upper left-hand corner). Would Fred want to switch to the opera, knowing 
that Ethel is going to the boxing match? The answer is no. And would Ethel want to 
switch to the opera knowing that Fred is going to the boxing match? No again. So this 
outcome is a Nash equilibrium.

The lower right-hand corner (both going to the opera) is also a Nash equilibrium. 
But the two outcomes where Fred and Ethel go their separate ways are not Nash 
 equilibria, because in either of these situations both Fred and Ethel would want to 
switch.

Suppose that Fred goes to the boxing match while Ethel goes to the opera (the lower 
left-hand box). Then, given Ethel’s plans, Fred prefers to switch, and, given Fred’s plans, 
Ethel prefers to switch. You might wonder whether Ethel would reason a little more 
deeply. “I know that as long as I am going to the opera, Fred will want to switch to the 
opera as well, so I think that I’ll just head over to the opera and wait for him to follow 
along.” It is true that Ethel might think this way, but such reasoning is not relevant to 
the question of whether this outcome is a Nash equilibrium. Given Fred’s intention to 
attend the boxing match, Ethel does want to switch. This rules out the lower left-hand 
corner as a Nash equilibrium.

Dangerous

Curve

The Battle of the Sexes
EXHIBIT 12.3

Fred likes boxing and Ethel likes opera, but they both like to be together. The upper-left and lower-right cor-
ners are Nash equilibria.

Fred’s Strategy

Ethel’s Strategy

Boxing match

Opera

Boxing match Opera

Fred gets 5

Ethel gets 3

Fred gets 1

Ethel gets 1

Fred gets 0

Ethel gets 0

Fred gets 3

Ethel gets 5
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From the lower left-hand box (or from the upper right-hand box) both Fred and Ethel 
want to switch (each taking the other’s behavior as given). This is more information 
than necessary to rule out these boxes as Nash equilibria; as long as at least one of Fred 
and Ethel wants to switch, the box is ruled out.

The Copycat Game

Dot’s brother Ditto is a copycat. If Dot watches television, Ditto wants to watch televi-
sion, too. If Dot goes out to play in the yard, then so does Ditto.

Dot, on the other hand, always wants to be by herself. She’s happy watching tele-
vision as long as Ditto is out in the yard, and happy in the yard as long as Ditto is  
 watching television.

The matrix in Exhibit 12.4 shows Dot and Ditto’s game. As long as they are doing 
something together, Ditto gets 5 units of utility and Dot gets 0. As long as they are apart, 
Ditto gets 0 units of utility and Dot gets 5.

Are there any Nash equilibria in this game? Consider the upper left-hand corner. If 
Dot and Ditto are both watching television, Ditto sees no reason to switch columns—
but Dot wants to switch rows by going out to the yard. So the upper left-hand corner is 
not a Nash equilibrium. Neither is any other corner.

Exercise 12.3 Explain why the upper-right, lower-left, and lower-right corners are 

not Nash equilibria.

Nash Equilibrium as a Solution Concept

A solution concept is a rule for predicting how games will turn out when they are played. 
Nash equilibrium is one of the most popular solution concepts; that is, economists like 
to posit that when people play games, they end up in Nash equilibria. There are, however, 
some reasons to be uncomfortable with Nash equilibrium as a solution concept.

Solution concept

A rule for predicting 

how games will turn 

out.

The Copycat Game
EXHIBIT 12.4

Dot is happy as long as she is alone; Ditto is happy as long as he is with Dot. There is no Nash equilibrium in 
this game.

Dot’s Strategy

Ditto’s Strategy

Watch television

Play in yard

Watch television Play in yard

Dot gets 0

Ditto gets 5

Dot gets 5

Ditto gets 0

Dot gets 5

Ditto gets 0

Dot gets 0

Ditto gets 5

Dangerous

Curve
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One problem is that some games, like the Battle of the Sexes, have more than 
one Nash equilibrium. There is no way to predict which Nash equilibrium is more 
likely.

Another problem is that some games, like the Copycat Game, have no Nash 
 equilibrium at all. If Dot and Ditto start out watching television together, Dot will go 
out to the yard, whereupon Ditto will follow her out, whereupon Dot will come back 
in, whereupon Ditto will follow her in, whereupon. . . . There is nothing in the Nash 
equilibrium concept to tell us where this process will end.

Example: The Price of Car Insurance

A 19-year-old male who drives a five-year-old Chevrolet Caprice will pay about $1,800 

a year for car insurance if he lives in Columbus, Ohio. That same 19-year-old male will 

pay about $2,500 if he lives in Detroit, $4,000 if he lives in Philadelphia, and $5,000 if he 

lives in Los Angeles! What can account for such enormous differences in price?

In a provocatively titled essay,2 two economists have drawn attention to the “game” 

where each driver decides whether to buy insurance. They argue that observed price dif-

ferences can be attributed to multiple Nash equilibria in this game.

Suppose, for example, that very few drivers buy insurance. Then insured drivers, 

when they have accidents, will usually have to collect from their own insurance com-

panies—the other party will typically be uninsured. Therefore insurance becomes very 

expensive, so few drivers want to buy it. In other words, uninsured motorists cause high 

insurance prices, and high insurance prices cause uninsured motorists. This is an exam-

ple of a Nash equilibrium: Everyone behaves rationally, taking everyone else’s behavior 

as given.

On the other hand, suppose that most drivers buy insurance. Then insurance 

becomes cheaper and therefore, most drivers want to buy it. Again, we have a Nash equi-

librium.

When a game has more than one Nash equilibrium, it’s difficult to predict which of 

the equilibria will actually occur. But once an equilibrium is reached, it tends to remain 

stable. So if, for any reason, Columbus fell into the “bad” equilibrium while Philadelphia 

fell into the “good” equilibrium, it’s not surprising that these equilibria would maintain 

themselves over time.

Example: Social Status

The average American earns almost $30,000 a year, according to official statistics, 

while the average citizen of Mali earns about $100. The latter figure is surely mislead-

ingly low, but the fact remains that there are enormous differences in income across 

countries. No economist has succeeded in giving a complete account of those differ-

ences. Most partial explanations rely on differences in tastes (e.g., people with a strong 

preference for saving will be wealthier in the long run) and differences in available tech-

nology. But recently, a number of economists have pointed to the possibility of multiple 

equilibria.

2 E. Smith and R. Wright, “Why is Automobile Insurance in Philadelphia So Damn Expensive?” American Economic 

Review 82 (1992), 756–772.
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One intriguing story is that the relevant game is the mating game—the “game” in 

which people select marriage partners. To see how this can be relevant, let’s imagine two 

stylized extremes.3

First, imagine a society where the richest people get the most desirable mates. 

In that society, people will be motivated to save, not just to acquire better mates for 

themselves, but also to acquire better mates for their children. And as long as all your 

neighbors play that strategy, you’ll want to play it, too. In other words, we have a Nash 

equilibrium.

Now imagine a society where mates are allocated according to social status, which is 

inherited from your parents independent of wealth. In such a society, low-status people 

might try to attract high-status mates by acquiring a lot of wealth. But this strategy is dis-

couraged if it dooms your children to even lower status. So if the “rules of the game” are 

that children of such “mixed marriages” have the lowest status of all, then there can be a 

Nash equilibrium in which people save very little.

Notice that even if the two societies are populated by identical people, their incomes 

will evolve very differently. A society that lands in either of the two equilibria will tend to 

remain there.

These highly stylized examples are far too simplistic to explain all the differences 

between the United States and Mali, but they do demonstrate that it’s possible for mul-

tiple Nash equilibria to occur in this context and therefore that multiple equilibria might 

play an important role in understanding why some countries are so much wealthier than 

 others.

Mixed Strategies

The Copycat Game has no Nash equilibrium. How might we expect Dot and Ditto to 
select their strategies in this game?

If Ditto can predict Dot’s behavior, he will simply mimic it; therefore, it is important 
for Dot to keep Ditto off guard. One way for her to do this is to flip a coin. On heads, 
she watches television and on tails she plays in the yard. Because her behavior is now 
totally unpredictable, Ditto can do no better than to flip his own coin and hope that it 
lands the same way Dot’s does.

Notice that it is important to both Dot and Ditto that their coins be fair coins, with 
heads and tails equally probable. If Dot’s coin is weighted so that she is more likely to 
watch television than to play outside, then Ditto will throw his coin away and watch 
television, giving him a better than even chance to win the game. And likewise, if Ditto’s 
coin is weighted, then Dot has an opportunity to discard her own coin and follow a 
strategy that puts the odds on her side.

The Copycat Game is quite symmetric, in the sense that there is always a “winner” 
with 5 utilities and a “loser” with 0. In a game with less symmetry, Dot and Ditto might 
prefer to flip weighted coins, sacrificing some unpredictability in exchange for improv-
ing the chances of their preferred outcomes. We can view each possible weighting as an 
alternative strategy. (That is, “flip a fair coin” is one strategy; “flip a coin that comes up 
heads two-thirds of the time” is another; “flip a coin that comes up heads three-fourths 

3 The example to follow is based on H. Cole, G. Maulath, and A. Postlewaite, “Social Norms, Savings Behavior 

and Growth,” Journal of Political Economy 100 (1992), 1092–1125.
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of the time” is still another.) We call these options mixed strategies, as opposed to the 
pure strategies illustrated in Exhibit 12.3. If mixed strategies are allowed, then it is 
 possible to prove under quite general circumstances that a Nash equilibrium must 
exist.

Mixed Strategies in Sports

In the international tournaments organized by the World Rock Paper Scissors Society 
(yes, that’s a real organization), nobody ever consistently plays “Rock.” Instead, the best 
players are the least predictable players. In Nash equilibrium, everyone plays a mixed 
strategy—1/3 “Rock,” 1/3 “Paper,” and 1/3 “Scissors.”

Exercise 12.4 Explain why a strategy consisting of ½ “Rock,” ¼ “Paper,” and 

¼ “Scissors” cannot be part of a Nash equilibrium.

Mixed strategies are common in more traditional sports as well. In baseball, 
 pitchers want to be unpredictable—the pitcher who always throws a fastball will always 
face a batter who is prepared for a fastball. A football team that always passes will 
always face a defense that’s prepared for a pass. In soccer, a kicker who always aims his 
penalty kicks in the same direction will always face a goalie who dives in that direction.

Recently, two economists 4 examined the strategies of championship tennis 
players. To keep it simple, they assumed that the server has just two options: Serve 
to the receiver’s left or to the receiver’s right. And the receiver has just two options: 
Prepare to receive the serve on the left or on the right. The payoffs depend on the 
particular strengths of particular players, so the associated game matrix depends 
on who’s playing. The economists estimated the game matrices for various players, 
computed the Nash equilibrium mixed strategies, and examined the players’ actual 
play. Their conclusion: The evidence is very strong that players do play just as the 
theory predicts.

Pareto Optima

Nash equilibrium is a positive (as opposed to normative) concept; it is designed to pre-
dict what will happen as opposed to enabling us to discuss what ought to happen. In 
this section, we will discuss the normative side of game theory.

Look again at Fred and Ethel, who played the Battle of the Sexes Game in 
Exhibit 12.3; this game is reproduced in Exhibit 12.5. In Exhibit 12.5, each of the 
four outcomes has been labeled with a letter (from A through D) for easy reference.

Fred and Ethel disagree about the desirability of the various outcomes; for 
example, Fred thinks outcome A is better than outcome D, while Ethel thinks just the 
opposite. But there are certain things they both agree on. For example, both agree that 
outcome C (where Fred and Ethel each get 1) is better than outcome B (where they 
both get 0).

Because Fred and Ethel are unanimous in this judgment, we say that moving from 
B to C is a Pareto improvement, or that C is Pareto-preferred to B. In general, a change 
is a Pareto improvement if nobody objects to it.5

Mixed strategy

A strategy that involves 

a random choice 

among pure strategies.

Pure strategy

A single choice of row 

(or column) in the game 

matrix.

Pareto 
improvement or 

Pareto-preferred

A change to which 

nobody objects.

4 Mark Walker and John Wooders, “Minimax Play at Wimbledon,” American Economic Review 91 (2002): 1521–1538.

5 In some books, the phrase Pareto improvement is reserved for a change to which nobody objects and at least 

one person prefers.
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Similarly, outcomes A and D are both Pareto improvements over B; nobody would 
object to a move from B to A or from B to D. A move from A to D is not a Pareto 
improvement, because Fred would object, and a move from D to A is not a Pareto 
improvement, because Ethel would object.

To the right of the game matrix in Exhibit 12.5, we have arranged the four outcomes 
in a “tree,” where upward movements represent Pareto improvements. A, C, and D 
are all Pareto improvements over B, so A, C, and D all sit higher than B in the tree. 
Likewise, A and D both sit above C. But A sits neither above nor below D, because A is 
not a Pareto improvement over D and D is not a Pareto improvement over A.

We say that an outcome is Pareto-optimal if nothing sits above it in the tree. In this 
example, outcomes A and D are Pareto-optimal. From a normative point of view, we 
can think of outcomes that are not Pareto-optimal as “bad” outcomes. Outcome C, for 
example, is “bad” in the sense that both Fred and Ethel would prefer to climb higher 
in the tree, though they might disagree about whether it would be better to climb to A 
or to D.

Exhibit 12.6 revisits the pigs in a box from Exhibit 12.1. Here outcome B is Pareto-
preferred to outcome A and outcome C is Pareto-preferred to outcome D, but there 
are no other instances of Pareto improvements. Thus, the “tree” breaks into two pieces, 
one of which shows B above A and one of which shows C above D. The Pareto-optimal 
outcomes are at the tops of the trees: B and C.

Exercise 12.5 Explain why B is not Pareto-preferred to C or D. Explain why C is 

not Pareto-preferred to A or B.

Exercise 12.6 Build a tree for the Prisoner’s Dilemma of Exhibit 12.2, keeping in 

mind that in this game, a shorter prison sentence is better than a long one. What are 

the Pareto optima in this game?

Pareto-optimal

An outcome that allows 

no possibility of a 

Pareto improvement.

The Battle of the Sexes Revisited
EXHIBIT 12.5

The tree shows that outcomes A and D are Pareto-preferred to C and B, and C is Pareto-preferred to B. A and D 
are Pareto optima, because nothing sits above them in the tree.

Boxing match

Ethel's Strategy

Opera

Fred's Strategy

Boxing match Opera

Fred gets 5

Ethel gets 3

Fred gets 1

Ethel gets 1

Fred gets 0

Ethel gets 0

Fred gets 3

Ethel gets 5

A

C

B

D

C

A D

B
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Pareto Optima versus Nash Equilibria

The pigs in Exhibit 12.1 have two Pareto optima (the lower left and upper right) but 
only one Nash equilibrium (the lower left). The Nash equilibrium happens to be one of 
the Pareto optima. But this is not always the case.

Consider the Prisoner’s Dilemma of Exhibit 12.2. Here we have already seen that 
the only Nash equilibrium occurs in the upper left. This outcome is not Pareto-optimal, 
because a shift to the lower right would benefit both prisoners. In fact, the Nash equi-
librium is the only outcome that is not Pareto-optimal.

Exercise 12.7 Explain why the upper-right box in the Prisoner’s Dilemma is Pareto-

optimal.

Exercise 12.8 Explain why the lower-left box in the Prisoner’s Dilemma is Pareto-

optimal.

In the Battle of the Sexes (Exhibit 12.3), both of the Nash equilibria (in the upper 
left and lower right) are Pareto-optimal. Starting in the upper left, any other square 
would be worse for Fred, and starting in the lower right, any other square would be 
worse for Ethel. Neither of the other two squares is Pareto-optimal.

Exercise 12.9 Explain why neither of the other two squares is Pareto-optimal.

Pigs in a Box Revisited
EXHIBIT 12.6

B is Pareto-preferred to A, and C is Pareto-preferred to D. B and C are the Pareto optima.

Push lever

Weak Pig's Strategy

Wait by dispenser

Strong Pig's Strategy

Push lever Wait by dispenser

Strong pig gets 90 calories

Weak pig gets �10 calories

Strong pig gets 15 calories

Weak pig gets 75 calories

Strong pig gets 100 calories

Weak pig gets �10 calories

Strong pig gets 0 calories

Weak pig gets 0 calories

A

C

B

D

B

A

C

D

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).  
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



THE THEORY OF GAMES  411

12.2 Sequential Games

You have probably played the game of “scissors, paper, rock.” Each player chooses one 
of three strategies (scissors, paper, or rock) and then the winner is determined by these 
rules: Scissors “cut” paper, paper “covers” rock, and rock “smashes” scissors.

Usually both players are required to choose their strategies simultaneously. There 
is a good reason for this. If players took turns, the second player would always win. 
Once you know what your opponent is doing, it is easy to choose a strategy that will 
defeat him.

On the other hand, there are games where it pays to go first instead of second. 
Consider the Battle of the Sexes (Exhibit 12.3), where Fred and Ethel disagree about 
where to spend the evening but want above all to be together. If Fred moves first, by 
going to the boxing match and waiting for Ethel to follow along, then she is sure to do 
so, giving Fred his most preferred outcome. If Ethel moves first by going to the opera, 
Fred follows her and Ethel wins.

In the games of Section 12.1, we have always assumed that both players must 
choose their strategies simultaneously. In this section, we will assume instead that there 
is a first player, who chooses a column in the game matrix, and then a second player, 
who chooses a row. This will require a new way of thinking about the outcome. We will 
illustrate the new method with some examples.

An Oligopoly Problem

Kodak and Fuji produce photographic film. Suppose that there are no other significant 
firms in this industry, so that Kodak and Fuji constitute an oligopoly. Industrywide 
profits depend on industrywide output according to the following table:

Quantity (rolls of film per day) Profits (dollars per day)

100 32

125 35

150 30

175 21

200 10

Moreover, the profits are divided in proportion to the firms’ output. Thus, if 
one firm produces 100 rolls of film while the other produces 75 rolls (a ratio of 4 
to 3), then the $21 profit is divided in the same ratio ($12 for one firm and $9 for 
the other).

Exhibit 12.7 shows the game matrix, where each company can produce either 50, 
75, or 100 rolls of film.

The outcome of this game depends very much on how the game is played. Suppose 
first that the companies are able to collude, maximizing their joint profits and splitting 
them afterward. Then they will produce 125 rolls of film, for the maximum possible 
profit of $35.

Suppose instead that each company takes its rival’s output as given and chooses its 
own output accordingly. In the language of game theory, this means that the companies 
achieve a Nash equilibrium in Exhibit 12.7. In the language of Chapter 11, we called 
the same thing a Cournot equilibrium. A Cournot equilibrium is nothing but a Nash 
equilibrium in a game where each company chooses its quantity.
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In Exhibit 12.7, the only Nash equilibrium is the center square. If each firm makes 
75 rolls of film, neither wants to deviate. Kodak recognizes that dropping its output to 
50 rolls would lower its profits from $15 to $14 and raising its output to 100 rolls would 
lower its profits from $15 to $12. Fuji recognizes the same thing.

Exercise 12.10 Explain why no other square in Exhibit 12.7 is a Nash equilibrium.

But now let’s change the rules of the game. Suppose that Kodak is able to announce 
its output before Fuji gets to make a move. Now what will Kodak do?

Kodak needs to think through the consequences of each possible strategy. 
Suppose that Kodak produces 50 rolls of film (committing itself to the first column). 
Fuji will then pick its favorite square in the first column, producing 75 rolls for a 
profit of $21 (beating $16 and $20 in the other squares). Kodak ends up with $14 
profit.

Suppose instead that Kodak produces 75 rolls of film (committing itself to the sec-
ond column). Fuji will then pick its favorite square in the second column, producing 
75 rolls for a profit of $15 (beating $14 and $12 in the other squares). Kodak ends up 
with $15 profit.

Suppose instead that Kodak produces 100 rolls of film (committing itself to the 
third column). Fuji will then pick its favorite square in the third column, producing 
50 rolls for a profit of $10 (beating $9 and $5). Kodak ends up with $20 profit.

Among these choices, Kodak likes the last one best. So Kodak announces that it 
will produce 100 rolls. Fuji responds by producing 50, and the game ends in the upper 
right-hand square, where Kodak earns twice what Fuji earns.

The outcome we have just described is called a Stackelberg equilibrium. A 
Stackelberg equilibrium occurs when one player commits to a strategy at the outset, 
accounting for the fact that the second player will choose an optimal response.

Stackelberg 
equilibrium

An equilibrium concept 

that arises when one 

player announces his 

strategy before the 

other.

An Oligopoly Problem
EXHIBIT 12.7

Kodak’s Strategy

Fuji’s Strategy

50

50

Kodak gets 16

Fuji gets 16

75
Kodak gets 14

Fuji gets 21

100
Kodak gets 10

Fuji gets 20

75

Kodak gets 21

Fuji gets 14

Kodak gets 15

Fuji gets 15

Kodak gets 9

Fuji gets 12

100

Kodak gets 20

Fuji gets 10

Kodak gets 12

Fuji gets 9

Kodak gets 5

Fuji gets 5

The only Nash equilibrium is in the center square, where Kodak and Fuji each earn profits of $15. But if the 
game is played sequentially and Kodak moves first, then Kodak announces a policy of producing 100 rolls of 
film. Fuji’s best response is to produce 50, leading to the upper right-hand square.
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The Importance of Commitment

Suppose that Kodak announces it will produce 100 rolls of film and Fuji responds 
by producing 50 rolls as in the Stackelberg equilibrium of Exhibit 12.7. Once Fuji 
has agreed to produce only 50 rolls, Kodak wants to deviate. It is better for Kodak to 
 produce 75 rolls for a profit of $21 than 100 rolls for a profit of $20.

So if Kodak moves first and Fuji moves second, then Kodak wants to change its 
move. If Kodak does change its move, and if Fuji foresees this, then Fuji goes ahead 
with plans to produce not 50 rolls of film but 75. (After all, Kodak will eventually place 
it in the middle column, where Fuji’s optimal strategy is not 50 but 75.) The firms end 
up at the Nash equilibrium in the center instead of the Stackelberg equilibrium in the 
upper right. Kodak’s profits fall from $20 to $15.

This means that Kodak is better off if it can commit itself to producing 100 rolls 
and assure Fuji that it is never going to back down from that commitment. This might 
surprise you. You might think that a firm is better off leaving itself some flexibility to 
deal with unforeseen contingencies. But that is not always so.

Consider the game of chicken, where two cretins drive their cars directly at each other 
until one of them loses by swerving. If you can absolutely guarantee that you will never 
swerve, you are a sure winner at this game. If you leave yourself the leeway to swerve in 
case your opponent is crazier than you are, then your opponent will have an incentive 
to become crazier than you are and you are liable to lose. The way to win the game of 
chicken is to disable your steering column and make sure your opponent is aware of it.

Summary

Strategic situations can be represented by game matrices, showing the outcome 

that results from each combination of strategies that the players can choose.

A Nash equilibrium is an outcome from which neither player would deviate, tak-

ing the other’s behavior as given. A game can have one Nash equilibrium, no Nash 

equilibrium, or many Nash equilibria.

A dominant strategy is a strategy that a player would want to adopt regardless 

of his beliefs about the other player’s strategy choice. The Prisoner’s Dilemma is 

an example of a game where both players have dominant strategies.

One outcome is a Pareto improvement over another if it makes at least one 

player better off without making any player worse off. An outcome is Pareto-

optimal if it allows no Pareto improvements.

There can be Nash equilibria that are not Pareto-optimal, and there can be 

Pareto optima that are not Nash equilibria.

When games are played sequentially instead of simultaneously, the Nash equi-

librium is no longer a natural solution concept. Instead, we use the Stackelberg 

equilibrium, where the first player calculates the second player’s responses to each 

of his possible strategies and then chooses the strategy that will yield him the best 

outcome. In a sequential game, it can be advantageous to go first or advantageous 

to go second, depending on the particular game.

In some games it is important to be able to commit to following a strategy even 

if better options become available. By committing, you can sometimes convince 

your opponent to behave in ways that are advantageous to you.
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Author Commentary www.cengage.com/economics/landsburg

AC1. For more information on multiple equilibria in the market for car insurance, see 

this article.

AC2. Read this article to learn about some slightly outdated applications of game 

theory to American politics.

AC3. This article is about the social status game.

Problem Set

The problems in this problem set refer to the following game matrices. In each 

case, Jack chooses “left or right” and Jill chooses “up or down.” The outcomes 

show how many buckets of water are rewarded.

Jack’s Strategy

Jill’s Strategy

Up

Down

Left Right

Jack gets 1

Jill gets 1

Jack gets 4

Jill gets 2

Jack gets 2

Jill gets 4

Jack gets 3

Jill gets 3

I.

Jack’s Strategy

Jill’s Strategy

Up

Down

Left Right

Jack gets 1

Jill gets 1

Jack gets 2

Jill gets 4

Jack gets 4

Jill gets 2

Jack gets 3

Jill gets 3

II.

Jack’s Strategy

Jill’s Strategy

Up

Down

Left Right

Jack gets 1

Jill gets 1

Jack gets 4

Jill gets 4

Jack gets 2

Jill gets 2

Jack gets 3

Jill gets 3

III.
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Jack’s Strategy

Jill’s Strategy

Up

Down

Left Right

Jack gets 2

Jill gets 2

Jack gets 4

Jill gets 1

Jack gets 1

Jill gets 4

Jack gets 3

Jill gets 3

IV.

Jack’s Strategy

Jill’s Strategy

Up

Down

Left Right

Jack gets 1

Jill gets 3

Jack gets 3

Jill gets 1

Jack gets 4

Jill gets 2

Jack gets 2

Jill gets 4

V.

Jack’s Strategy

Jill’s Strategy

Up

Down

Left Right

Jack gets 2

Jill gets 3

Jack gets 1

Jill gets 1

Jack gets 1

Jill gets 1

Jack gets 3

Jill gets 2

VII.

Jack’s Strategy

Jill’s Strategy

Up

Down

Left Right

Jack gets 12

Jill gets 8

Jack gets 9

Jill gets 8

Jack gets 15

Jill gets 7

Jack gets 14

Jill gets 10

VIII.

Jack’s Strategy

Jill’s Strategy

Up

Down

Left Right

Jack gets 2

Jill gets 2

Jack gets 1

Jill gets 1

Jack gets 1

Jill gets 1

Jack gets 3

Jill gets 3

VI .
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 1. In each game above, identify all of the Nash equilibria.

 2. In each game above, identify all of the Pareto optima.

 3. In each game above, does Jack have a dominant strategy? Does Jill?

 4. In each game above, what happens if Jack goes first?

 5. In each game above, what happens if Jill goes first?

 6. For each game above, create a reasonable story (like those that go with the 

exhibits in the text) that might lead to these numbers appearing in the matrix.

 7. Create a “tree” showing which outcomes are Pareto-preferred to which in the 

Kodak–Fuji game of Exhibit 12.7.

 8. Can you find examples of games (either among those that have appeared in the 

chapter or by creating them yourself) with the following characteristics?

a. There are no Nash equilibria.

b. There is exactly one Nash equilibrium, but it is not Pareto-optimal.

c.  There is more than one Nash equilibrium, but none of them is Pareto-optimal.

d.  There is more than one Nash equilibrium, and all of them are Pareto-optimal.

e.  There is more than one Nash equilibrium, and some are Pareto-optimal while 

others are not.

 9. Can there be a game with no Pareto optimum?

10. Suppose that the games of Exhibits 12.1, 12.2, 12.3, and 12.4 were played as 

sequential games. In each case, suppose that the player who chooses a column 

goes first. What are the outcomes of these games? Now suppose that the player 

who chooses a row goes first. In which cases do the outcomes change?

11. True or False: In a sequential game where the second player has a dominant 

strategy, he will always adopt that strategy.

12. True or False: In a sequential game where the first player has a dominant strat-

egy, he will always adopt that strategy.
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